产品参数 | |
---|---|
产品价格 | 电议 |
发货期限 | 商议 |
供货总量 | 不限 |
运费说明 | 一天 |
无缝钢管 | 20#、45#、Q345B |
产地 | 聊城 |
品牌 | 鑫森 |
无缝方管 | Q345B、20# |
鑫森通达无缝钢管有限公司是一家集工艺研发、设备生产、设备销售于一体的 湖南娄底无缝钢管研发生产企业。拥有一批具有丰富经验的研发销售团队和一支技术过硬的生产组装团队。主要生产 湖南娄底无缝钢管。
我们经秉承不断自我完善,以新科技、高标准、高质量来严格管理公司。打破原有 湖南娄底无缝钢管的技术与功能,从外观到内部配件及所有功能,以完美的设计、优惠的价格、优质的售后服务来实现于用户合作共赢。
国标结构用冷拔无缝钢管外径壁厚偏差范围
1 外径和壁厚
无缝钢管分热轧(挤压、扩)和冷拔(轧)两种。其外径和壁厚应符合GB/T 17395 的规
定。
2 冷拔无缝钢管外径和壁厚的允许偏差
冷拔无缝钢管外径和壁厚的允许偏差应符合表1 的规定。当需方事先未在合同中注明冷拔无缝钢管尺
寸允许偏差时,冷拔无缝钢管外径和壁厚的允许偏差按普通级供货。
根据需方要求,经供需双方协商,并在合同中注明,可生产表 规定以外尺寸偏差的冷拔无缝钢管钢管。
偏差等级
冷拔无缝钢管标准化外径允许偏差等级的划分
D1
±1.5%,小±0.75 mm
D2
±1.0%。小±0.50 mm
D3
±0.75%.小±0.30 mm
D4
±0.50%。小±0.10 mm
造成冷拔无缝钢管内外管壁有划痕的原因
1、冷拔无缝钢管的内壁表面缺陷
高精度冷拔无缝钢管内表面粗糙度Ra≤0.8μm,内径尺寸精度可以达到H9~H10,只有如此才能保证珩磨后达到H7~H8的内孔尺寸和Ra≤0.2μm的内表面粗糙度要求。影响珩磨管表面粗糙度的主要因素除珩磨机设备精度外,冷拔无缝钢管内表面质量是另一关键点,冷拔无缝钢管内表面缺陷经山东无缝钢管厂实测数据分类,主要有3种。
1.1.麻点
冷拔无缝钢管经粗珩后,可以发现其表面由许多凹点状缺陷,此种缺陷如果没有磨去会严重影响缸筒内孔光洁度,对于缸筒来说便属于废品。
1.2.划伤
划伤缺陷是冷拔时产生的,一般为一条沿钢管轴线方向上的划痕,必须有超过此划痕深度的珩磨余量,才可能磨去此种缺陷,加工出合格的缸筒。
1.3.不圆
冷拔无缝钢管在生产时,固定在芯杆上的内模是可以上下浮动的,所以,冷拔无缝钢管内径不象机加工管一样平直。另外,有些热轧无缝钢管、同管壁厚差较大,冷拔变形时由于管内存在变形不均匀现象,容易产生冷拔无缝钢管的不圆点。此管经珩磨后便会发现内孔有一个片状表面与其它地方反光度不同,如果磨削量较小,此处连冷拔时的磷化层也未磨去。严重影响缸筒表面质量。
根据山东无缝钢管厂多年来对珩磨管表面缺陷的跟踪分析,由于冷拔原因产生的各种缺陷所占比例分析为:麻点 87% 划伤10% 不圆3%
我国冷拔无缝钢管内外探伤技术的基本知识
在探伤技术领域,冷拔无缝钢管是指外径大于φ80mm的钢管。冷拔无缝钢管是石油、化工、热力、锅炉、机械液压等行业重要用材。随着国民经济的发展,我国在“十一五”期间,冷拔无缝钢管的需求量大幅度增加,并明显呈现出大口径化的发展趋势。特别是对于要求耐腐蚀、抗挤压的油井管和大口径高压锅炉管及高质量的石油裂化管、石油石化输送管线管等,将随着 对能源基础设施投入的加大而成为需求的热点。由此,保证产品出厂质量的无损检测提出了方法和技术上的新课题。
水槽式超声检测是采用钢管螺旋前进式,超声探头固定不动。通过水槽和被检钢管的底部充分水耦合的特点,保证耦合层的厚度不变。但是因为超声主要检测内部缺陷对表面和次表面缺陷存在盲区,导致无法检测,再加上采用螺旋前进式,对于12m长的钢管需要占空间30m的场地等不足,一直影响钢管检测方法的选择和推广。
因此,国内外对于冷拔无缝钢管的探伤,一般采用漏磁法或水压实验。在国内,尚没有性能良好的适合冷拔无缝钢管的漏磁探伤设备出品,一旦使用即需要进口。进口漏磁探伤设备价格昂贵,对于国内的大多数企业难以接受;而水压试验效率低、劳动强度大,特别是当操作者责任心不高时,水压检验形同虚设。可见,实现冷拔无缝钢管的探伤已经成为冶金钢管行业亟待解决的课题。
冷拔无缝钢管的特点是直径大,壁厚相对较厚,因此根据这一特点充分利用超声检测内部和涡流检测表面和次表面的特点相结合,可实现“无盲区”探伤。通过采用“钢管原地旋转,检测探头前进的组合方式”,不仅解决检测问题,还解决缩小占用场地的空间。
在自动探伤中,提离效应和稳定耦合层对探伤的影响往往成为棘手的问题。在自动探伤中,提离效应和稳定耦合层是引起漏检和误报的主要原因。不管是漏检或误报,都影响检测的可靠性。长期以来,在自动探伤的实际应用中,由于提离波动引起检测可靠性下降的问题或者由于水耦合层的厚度变化,一直是困扰着这种技术正常使用的“瓶颈”。
通常,解决提离效应的办法主要有:探头的机械跟踪法、探头线圈的桥式接法、改变检测线圈LC回路的电容值和使用多频检测技术等。除机械跟踪法外,其他的几种解决办法,通过改进探头和仪器来得以实现,但机械跟踪只能改进探头架,来防止提离间隙的变化。在实际工业应用中,探头机械跟踪法是常用的克服提离效应影响的方法。常见的探头机械跟踪模式有两种:一种,是采用辊轮限位与汽缸或弹簧顶推相结合的方法,使检测探头与被检工件表面之间保持恒定距离。虽然这种方法对抑制提离效应能起到较好的作用,但同时会使振动噪声加大。另一种,采用探头机械跟踪的方式,是利用测距探头及时地测量出检测探头提离间隙的波动情况,并用测距号来控制和驱动步进电机等动力装置带动检测探头动作,以保证探头与被检工件之间的间隙恒定。这种方法适用于板材或坯材等平面扫查探伤,缺点是由于机械动作的反应速度比较慢,而且还比较复杂。
把探头装入一个探头小车中,并采用二级弹簧顶推的方法使检测探头与被检工件表面之间始终保持一定的距离。从实验结果来看,探头的随动性比较强,基本保证了探头与被检测钢管表面之间的距离恒定,探伤也取得了较好的效果。通常,解决水耦合层的办法主要有:固定水槽箱、稳定水喷装置。由于采用钢管旋转探头前进的方式,冷拔无缝钢管的长度一般在10m左右。因此必须考虑采用稳定水喷装置,如增加流量口的直径,降低流量口和钢管的高度,减少水花。目前常规的解决办法也只能这样,但解决的效果是在可以接受范围内